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Abstract 
This paper presents an original method of angle trisection using dynamic geometry as an extension of 

the classical straightedge-and-compass framework. By incorporating variations in geometric 

parameters such as segment lengths and angle measures, the method circumvents the classical 

impossibility constraints without violating the foundational tools. The trisection process relies on 

geometric constructions derived from trigonometric identities and is validated through manual 

replication and iterative adjustment. While describing historical attempts and methods that were found 

inapplicable under the strict constraints of Greek mathematicians, this paper develops a dynamic 

approach that enables the trisection of angles that are proven non-constructible in static geometry. It 

also facilitates the construction of regular polygons (e.g., non-constructible 9- and 18-gons) whose 

defining angles are otherwise inaccessible. Importantly, this method does not resolve the classical 

Greek problem of angle trisection in its strictest form; rather, it offers an alternative constructive 

pathway while the original problem remains formally unsolved. 

 

1. Introduction 
It occupied the minds of ancient Greek mathematicians to double the unit cube, trisect an angle, and 

square a circle geometrically with the use of a straightedge and compass in the interest of purity of 
geometry, but these constructions could not be accomplished and still remain unconstructible. As 

Heath discusses, the origins of these three problems from antiquity are not well-documented [5]. 
This is likely attributed to how early Greek mathematical discoveries were orally transmitted before 

they were formally recorded—a characteristic feature of the Greek intellectual tradition at the time 

[10] [3]. This also contributed to the deceptive simplicity that made them enduring challenges. 
Although dividing an angle into two equal parts (bisection) is straightforward, the Greeks found 

trisecting a given angle nearly impossible within their geometric constraints. Certain angles, such as 

2π, π, π/2,π/4, 3π/20 radians are trisectable, but this property is not universal.  
We say that a geometric figure is constructible if it can be drawn using only an unmarked 

straightedge and compass. An unmarked straightedge, as shown in Figure 1, is a flat, metallic or 

wooden straight piece that does not have any marks written upon it and thus can not be used for 
measuring length. However, it can be used to draw straight lines, join points, extend the straight 

lines, and compare their lengths. A compass is a geometric tool, as shown in Figure 2, that has one 
pointed end to be fixed to the paper and the other end has the facility to hold a pencil or a marker. 

Its two ends can be opened according to the desired width. In modern geometric tools, the 

adjustment of the compass once made can be locked to avoid any change in it while constructing a 
geometric figure, but in Euclidean geometry, the compass used to collapse once it was lifted from 

the paper. A compass is used to draw circles, compare radii, bisect angles and line segments, and 
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mark equal lengths. It can also be used to compare distances by adjusting its opening. However, it 

has no markings to show the actual measurement of angles. 

  
Figure 1 An ornate 18th century iron straightedge Figure 2 A Compass Straightedge Wikimedia 

under CCO 1.0 licence 

According to Gauss theorem angle 2𝜋/𝑁, where 𝑁 is a positive integer, is constructible if N 

is given by Equation (1.1). In this regard, I refer to Fermat primes denoted by 𝑝1 , 𝑝2, 𝑝3 , …,  which 

ascertain feasibility of construction of an angle 2𝜋/𝑁 that in fact is an external angle of 𝑁 equal 

sided polygon or N sided regular polygon. Fermat primes are specific integers of the form 22𝑘
+ 1, 

where k is a non-negative integer including zero. While the first few Fermat numbers (e.g., 3, 5, 17) 

are prime, higher Fermat numbers, such as 𝐹5 = 4,294,967,297, are composite. Mathematically, an 

angle 2π/Ν is constructible when  

 

                𝑁 = 2𝑚(𝑝1)(𝑝2)(𝑝3)… (𝑝𝑀),          (1.1) 

𝑝1 , 𝑝2, 𝑝3 , … , 𝑝𝑀  are distinct Fermat’s primes,  𝑚 = 0, 1, 2, …  [3].  

 Coming to trisectability, if 𝑁 = (2𝑚)(𝑝2)(𝑝3)… (𝑝𝑀), angle 2𝜋/𝛮 is constructible, and its 

trisected angle  2𝜋/(3𝛮) is also constructible, since number 3 is also a Fermat prime. But when 𝑁 

instead of being equal to (2𝑚)(𝑝2)(𝑝3)… (𝑝𝑀), is equal to 3(2𝑚)(𝑝2)(𝑝3)… (𝑝𝑀), therefore, it 

would not be trisectable, because in the trisection, 𝑁 would equal (3)(3)(2𝑚)(𝑝2)(𝑝3)… (𝑝𝑀), 
which contains a repeated factor of 3 and thus violates the condition of Equation (1.1) [3]. 

Concluding it, for an angle 2π/Ν to be intrinsically trisect-able, 𝑁 must not be divisible by 3, and 

the angle must also be constructible. Notwithstanding the above condition, a derivation of the 

Galois theory provides that an angle T is constructible if and only if the complex number 𝑒 𝑖𝑇 lies in 

a field extension of rationals of degree a power of 2. 

 
1.1 Historical Context  

The question arises as to why Greek mathematicians were particular about the constructibility of 

geometric figures using a straight edge and compass. Its answer lies in the purity of geometrical 
construction with tools as simple as a straightedge and a compass. ‘Purity’ thus denotes adherence 

to geometric principles in methods that trisect a given angle. 
 Coming to trisectability, some angles using Fermat’s primes as stated above are trisectable 

geometrically, but all angles are not trisect-able. The impossibility stems from the fact that, unlike 

quadratic equations, which can be solved using geometric construction, a general cubic equation 
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cannot be solved with just a straightedge and compass. This limitation directly translates into the 

classical Delian problem of doubling the cube—a task proven impossible by Pierre Wantzel in 1837 
[10]. 

 Nevertheless, early mathematicians such as Hippocrates, Archimedes and others made notable 
attempts to solve this problem, often resorting to methods that violated the classical geometric rules. 

Hippocrates used a geometric drawing as given in Figure 3 which is explained herein under.  

 

1.1.1 Hippocrates Geometric Construction 

 

Figure 3 Angle Trisection by Hippocrates Construction 

Construction: To trisect ∠ABC, construct 𝐴𝐷̅̅ ̅̅ ⊥ 𝐵𝐶̅̅ ̅̅ , where 𝐷 is on 𝐵𝐶̅̅ ̅̅ . Complete the rectangle 

ADBE. Construct 𝐸𝐴⃗⃗⃗⃗  ⃗ with F beyond A on the ray. Draw 𝐵𝐹̅̅ ̅̅  passing through 𝐻, which is the 

intersection of 𝐴𝐷̅̅ ̅̅  and  𝐵𝐹̅̅ ̅̅   such that HF̅̅ ̅̅ = 2 AB̅̅ ̅̅  

By construction, m∠FBC =
1

3
m∠ABC  [8].  

Proof:  

1. Mark G as the midpoint of 𝐻𝐹̅̅ ̅̅ . 
2. Construct 𝐴𝐺̅̅ ̅̅  

3. ∆ FAH has a right angle at 𝐴 by construction, therefore AG̅̅ ̅̅ = HG̅̅ ̅̅ = GF̅̅̅̅ .  

4. By construction, 𝐴𝐵̅̅ ̅̅ =
1

2
𝐻𝐹̅̅ ̅̅ . By substitution, 𝐴𝐵̅̅ ̅̅ = 𝐴𝐺̅̅ ̅̅ = 𝐻𝐺̅̅ ̅̅ = 𝐺𝐹̅̅ ̅̅ .     

5. ∆ ABG is an isosceles triangle, thus m∠ABG = m∠AGB. 

6. ∆ GAF is an isosceles triangle, thus m∠GAF = m∠GFA. 

7. In ∆ GAF, use the external angle relationship, m∠BGA = m∠GAF+ m∠AFG. Since the 

triangle is isosceles, m∠BGA = 2(m∠AFG).  

8. By construction, EF̅̅̅̅ ∥ BC̅̅̅̅ . Additionally, m∠CBF = m∠AFG as they are alternate angles of 

parallel lines. 

9. Consider then ∠𝐴𝐵𝐶. By the angle addition postulate, 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐶𝐵𝐹 + 𝑚∠𝐺𝐵𝐴. By 

substitution, 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐶𝐵𝐹 + 𝑚∠𝐵𝐺𝐴. Again, by substitution, 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐶𝐵𝐹 +
2(𝑚∠𝐴𝐹𝐺). By substitution once more, m∠ABC = m∠CBF+ 2(m∠CBF). 

10. Therefore, 𝑚∠𝐴𝐵𝐶 = 3(𝑚∠𝐶𝐵𝐹), and the angle is trisected. 

While this construction is mechanically correct, it uses a marked ruler, violating classical constraints. 
As Plato remarked: “In proceeding in [a mechanical] way, did not one lose irredeemably the best of 

geometry [8]?” 

 Another mechanical solution found in Arabic work in the ‘Book of Lemmas’ is attributed to 
Archimedes. In fact, this work is not a translated copy of the work of Archimedes, but most historians 

believe much of the work given in the said book belongs to Archimedes [8].  
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1.1.2 Archimedes’ Construction 

To trisect ∠𝐷𝐹𝐴, construct a circle with centre 𝐹 and points 𝐴 and 𝐷 on its circumference. Draw a 

line from D to intersect the circle at C and the extended line 𝐴𝐹 at B, ensuring CB̅̅̅̅ = CF̅̅̅̅ . Construct 

EF̅̅̅̅ ∥ DB̅̅ ̅̅ , ensuring CF̅̅̅̅ = EF̅̅̅̅ = r,  the radius of the circle. 

 

Figure 4 Angle Trisection by Archimedes' Construction 
Proof:  

i. In isosceles △ 𝐶𝐹𝐵, 𝑚∠𝐶𝐹𝐵 = 𝑚∠𝐶𝐵𝐹, therefore, external 𝑚∠𝐷𝐶𝐹 = 2(𝑚∠𝐶𝐵𝐹). 
ii. In a triangle △ 𝐹𝐶𝐷, 𝑚∠𝐷𝐶𝐹 = 𝑚∠𝐹𝐷𝐶, since  FC̅̅ ̅, FD̅̅̅̅   are the radii of the circle.  

iii. The 𝑚∠𝐶𝐷𝐹 = 𝑚∠𝐷𝐸𝐹, being alternate angles, therefore, 𝑚∠𝐷𝐸𝐹 = 2(𝑚∠𝐶𝐵𝐹). 

iv. The 𝑚∠𝐶𝐹𝐵 = 𝑚∠𝐴𝐹𝐸, being corresponding angles, therefore,𝑚∠𝐴𝐹𝐸 =
1

2
(𝑚∠𝐸𝐹𝐷 or 

𝑚∠𝐴𝐸𝐷 = (
1

3
)𝑚∠𝐴𝐹𝐷 [8].  

 As with Hippocrates’ method, this construction relies on mechanical aids, making it 
unacceptable under classical geometric rules. Another method, though not yielding accurate 

trisection, is based on summation of an infinite series whereby the sum of some of the terms of the 
series was used. Another method was given by Ludwig Biebetbach but it used trisectrix and was not 

acceptable [1]. A trisectrix is a plane curve such that, for a given angle, a point moving along the 

curve allows the construction of one-third of that angle. 
 

1.1.2 Trisectrix of Maclaurin      

The Trisectrix of Maclaurin is the locus of the intersection point of two lines rotating about their 

centres (0, 0) and (𝑎, 0) at uniform angular speeds, with the line rotating about (𝑎,0) moving three 

times as fast as the line rotating about (0, 0). Initially, both lines coincide along the segment 

connecting(0,0)  and (𝑎, 0).  The curve traced forms a loop that extends to infinity both upward 

and downward, with 𝑥 =  −𝑎/2 as its asymptote [11]. It intersects the x-axis at (0, 0) and 

(3𝑎/2, 0), and intersects the vertical line 𝑥 =  𝑎 at 𝑦 = ±𝑎/31/2 [11]. The 𝑚∠𝑂𝑄𝑃 =
2

3
(𝑚∠𝜑), 

and the distance 𝑟 = 𝑂𝑃̅̅ ̅̅  is determined by the law of sines: 

    𝑟/𝑠𝑖𝑛(𝜑) = 𝑎/𝑠𝑖𝑛(2𝜑/3). 
If the given, 𝑚∠𝑄𝑃𝑋 = 𝑚∠𝜑, then trisected angle is 𝑄𝑂𝑋 (𝜑/3) [11].  
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Figure 5 Trisectrix of Maclaurin, Image: MaclaurinTrisectrix.SVG by RDBury, created using 

gnuplot and Inkscape 
 

2 Modern Approaches and Use of Physical and Intuitive Methods 
 

2.1 Angle Trisection by Paper Folding Art Origami   

Cubic equations including 𝑐𝑜𝑠(𝑥) =  4 𝑐𝑜𝑠3(𝑥) − 3 𝑐𝑜𝑠 (𝑥) where angle 𝑥 is to be trisected, are 

solvable using Origami [4], [6] by folding a sheet of paper along a straight line such that a set of 
particular incidences is obtained between points and lines. These incidences are determinable by the 

coefficients of the equation. 

 Consider an angle of 𝜋/3 radian, which is to be trisected, relates to solving a polynomial 

equation 𝑃(𝑐𝑜𝑠 𝑥) = 0, or  4 𝑐𝑜𝑠3(𝑥)− 3 𝑐𝑜𝑠 (𝑥) − 1/8 = 0. By the rational root theorem, this 

equation can have rational roots, ±1,±1/2, ±1/4, ±1/8. But none of these happen to be a root of the 

equation. Therefore, the equation is not reducible over rational roots, and the minimum polynomial 

has a degree of three. Thus, the angle π/3 is not trisect-able.  
 

2.2  Trisection of an Arbitrary Angle by Dynamic Geometry 
 

2.2.1 Dynamic Geometry  

A geometric construction ordinarily is drawn according to the given conditions. I call such a drawing 

as belonging to Static Geometry since no adjustment in length or angle is permissible and these are 

drawn, according to the given geometric statement. At times, given conditions can not be fulfilled by 
geometric drawing and need variation in length, angle or other geometric elements bringing in 

dynamic approach. I. M. Yaglom in his book Geometric Transformations stresses that interactive and 
real-time manipulation is vital for solving non-conventional geometric problems [9]. 

 Such a dynamic approach brings in use of dynamic geometry. Dynamic geometry is a branch 
of geometry that focuses on constructing geometric figures based on given conditions and exploring 
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how variations in elements, such as angles, sides, or points, affect the figure’s ability to meet those 

conditions. Unlike traditional static constructions, dynamic geometry encourages interactive 
exploration, where the geometric objects can be manipulated in real-time. This interactivity allows 

users to investigate geometric properties and solve problems that may not be easily approached 
through conventional methods, such as using a straightedge and compass. 

 The use of software tools like Geometer’sSketchpad, GeoGebra, or Cabri Geometry 

significantly enhances the ability to explore, visualise, and manipulate geometric figures. Dynamic 
geometry provides an interactive environment that facilitates the understanding of geometric 

relationships and the discovery of solutions to complicated problems. By engaging with dynamic 
geometry, users are able to investigate geometric configurations more deeply and intuitively, making 

it a valuable tool for both learning and solving advanced geometric problem.  

 
2.2.2 Dynamic Geometry: Alternative Constructions Within Classical Boundaries 

Dynamic geometry offers an alternative paradigm that operates within a different conceptual and 
operational framework from classical compass-and-straightedge constructions. It does not contradict 

classical impossibility theorems—such as the trisection of an arbitrary angle or the duplication of the 

cube—but instead circumvents their constraints by leveraging continuous motion, loci, and real-time 
feedback mechanisms. These tools allow constructions that are not permitted in the static framework 

of classical geometry, thus opening new pedagogical and exploratory avenues without invalidating 
the foundational results of traditional Euclidean theory. 

 

2.2.3 Construction of Trisection of an Arbitrary Angle 

 

 
Figure 7 Uncorrected Angle Trisection 
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Figure 8 Corrected Angle Trisection 

The given ∠𝐾𝐶𝐵 is shown in Figure 7, a line segment 𝐶𝐾 equal to unity is marked, and from point 

𝐾,  construct 𝐾𝐽̅̅ ̅ ⊥ 𝐶𝐵̅̅ ̅̅ , meeting it at 𝐽. 

i. A ∆ABC is constructed with an arbitrary base angle at point C and 𝐴𝐵̅̅ ̅̅  is of unit length and 

is ⊥ line CB.  

ii. From point 𝐵, construct 𝐵𝐷̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅ , from point D, construct 𝐷𝐸̅̅ ̅̅ ⊥ 𝐵𝐶̅̅ ̅̅  and from point 𝐸, 

construct 𝐸𝐹̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅ . 

iii. Perpendiculars 𝐵𝐷 is extended to point 𝐺, so that 𝐵𝐺̅̅ ̅̅ = 3𝐵𝐷̅̅ ̅̅ , similarly the line segment 

𝐸𝐹̅̅ ̅̅  is extended to 𝐻, so that 𝐸𝐻̅̅ ̅̅ = 4𝐸𝐹̅̅ ̅̅ . 

iv. From point 𝐺, a line 𝐺𝐻 is drawn so that m∠𝐺𝐻𝐼 = m∠𝐼𝐸𝐵. 
v. The compass is opened equal to length segment 𝐶𝐽 and compared with length of line 

segment 𝐻𝐼. If both lengths are equal, no further change in construction is needed.  

vi. Figure 7 illustrates the uncorrected construction where m∠𝐶(m∠𝐴𝐶𝐵) takes an arbitrary 

value, resulting in unequal lengths 𝐶𝐽 and 𝐻𝐼. Refer to Figure 7, 𝐶𝐽 = 36 and 𝐻𝐼 =
34 units. This inequality reflects the error in trisection when the cosine triple-angle 

identity is applied without adjustment. Kindly note inequality in trisection in Figure 7 as 

m∠𝐾𝐶𝐵 = 58 degrees andm∠𝐴𝐶𝐵 = 13 degrees. Iterative corrections are performed by 

varying ∠𝐶  along extended length BJ, as detailed in steps iii to v, until 𝐶𝐽̅̅̅ equals 𝐻𝐼̅̅̅̅ .         
Kindly peruse corrected construction in Figure 8. 

vii. Figure 8 displays the corrected construction where m∠𝐶(m∠𝐴𝐶𝐵) has been adjusted to 

achieve exact triection. This is confirmed when 𝐶𝐽̅̅̅ equals 𝐻𝐼̅̅̅̅ , both measuring 36 units, 

and the angles are verified using AutoCAD: m∠𝐴𝐶𝐵 = 19.33 degrees andm∠𝐾𝐶𝐵 =
58 degrees. Please note that, AutoCAD software application was used only for the purpose 
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of clarifying the equality in lengths and angle trisection; otherwise the constructions have 

been achieved using a straight edge and compass, employing dynamic geometry. 
Proof of Trisection of Angle 

i. Referring to Figure 8, in ∆ 𝐾𝐶𝐽, 𝐶𝐾̅̅ ̅̅ = 1 unit, therefore, 𝐶𝐽̅̅̅ = 𝑐𝑜𝑠(∠𝐾𝐶𝐽). 

ii.  In ∆𝐴𝐵𝐷, m∠𝐴𝐵𝐷 = m∠𝐶, therefore 
𝐵𝐷

𝐴𝐵
= cos(𝐶) or 𝐵𝐷̅̅ ̅̅ = cos (C ), since 𝐴𝐵̅̅ ̅̅ = 1.  

iii. In triangle 𝐷𝐵𝐸,  𝐷𝐸/𝐷𝐵 = 𝑐𝑜𝑠(𝐶) or 𝐷𝐸̅̅ ̅̅ = 𝑐𝑜𝑠2(𝐶), since 𝐵𝐷̅̅ ̅̅ = cos (C ). 

iv. In triangle 𝐷𝐸𝐹,  𝐸𝐹/𝐷𝐸 = cos ) or 𝐸𝐹̅̅ ̅̅ = 𝑐𝑜𝑠3 (𝐶), since 𝐷𝐸̅̅ ̅̅ = 𝑐𝑜𝑠2(𝐶). 

v. Since 𝐻𝐼 = 𝐻𝐸 − 𝐺𝐵 = 4𝑐𝑜𝑠3(𝐶) − 3𝑐𝑜𝑠(𝐶), therefore,  𝐻𝐼 = 𝑐𝑜𝑠(3𝐶).  

vi. When 𝐶𝐽̅̅̅ = 𝐻𝐼,̅̅ ̅̅  then cos (
1

3
∠K𝐶𝐵) = cos∠𝐴𝐶𝐵) or m∠𝐾𝐶𝐵 = 3(m∠ACB). 

vii. Hence base angle m∠𝐴𝐶𝐵or m∠𝐶 =
1

3
(m∠KCB). 

 

3. Construction of Regular Polygons Based on Angle Trisection 

3.1 External and Internal Angles of a Regular N Sided Polygon  
A regular polygon is a geometric figure that has 𝑛 equal sides, where 𝑛 can be 3, 4, 5… A straight   

line subtends an angle of 𝜋radians. If vertex angle 𝐴 of the triangle 𝐴𝐵𝐶 is enlarged, its base angles 

will decrease, eventually reaching zero when angle A attains π radians. This leads to the result that 
sum of three angles that its sides subtend equals to π radians. A natural corollary is that when its 

sides are equal, all three angles are equal with angle 𝜋/3 radians in an equilateral triangle (or a 

regular polygon of 3 sides).  

When the base 𝐵𝐶 of the triangle 𝐴𝐵𝐶, is extended, each of its external angle becomes (𝜋 −
𝜋/3) = 2𝜋/3 radians. Similarly for a polygon with four sides each external angle is 2𝜋/4 radians. 

By following the same procedure, the external angle of a regular polygon with n sides is 

2𝜋/𝑛.Consequently, its internal angle will be𝜋 − 2𝜋/𝑛. 
 That leads to the conclusion, if an angle 2𝜋/𝑛 is constructible, then a regular polygon with 

𝑛 sides is also constructible. However, not all regular polygons can be constructed using a 

straightedge and compass. Referring to Section 1, an angle 2𝜋/𝑛  is constructible if and only if  𝑛 is 

a power of 2 or a product of powers of 2 and one or more Fermat primes.  

 
3.2 Construction of Non-Constructible Regular Polygons  

If 𝑞 is a positive integer and 𝑛 is of type 3𝑞 satisfying Equation (1.1), then a regular polygon of 

sides 3𝑞 is constructible, but a regular polygon of sides 32𝑞 is not constructible as 𝑛 = (3)(3)𝑞 

does not have distinct Fermat’s primes. As explained above, dynamic geometry facilitates 
construction of a non constructible angle by its trisection, therefore, trisected external angle 

2π/{(3)(3)q} although is non constructible using a straightedge and compass, is made constructible 
employing dynamic geometry, facilitates construction of non constructible regular polygons. Thus 

use of dynamic geometry helps geometric construction of non constructible regular polygons of 

sides n = 2k(3r)(p1)(p2)(p3)… (pM) where k, p1, p2, p3 ,… , pM have there unusual meaning and 

r = 2, 3, 4, … [2].  
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4. Construction of Non-Constructible Regular Polygons Using Dynamic 

Geometry   

4.1 Construction of non-constructible 9-Sided and 18-Sided Regular Polygons 
 

 
Figure 10 A 9-Sided Regular Polygon, Credit                 Figure 11 A 18-Sided Regular Polygon, 

Credit LászlóNémethCreative CommonsCC0 1.0 UniversalLászlóNémethCreative CommonsCC0 
1.0 Universal 

The external angle of 9-sided polygon as already discussed earlier is 2𝜋/9.  Ordinarily, this angle is 

not constructible as it violates essential conditions of Equation (1.1) and it also corresponds to the 

equation 𝑐𝑜𝑠(2𝜋/3) = 4𝑐𝑜𝑠3(2𝜋/9) − 3𝑐𝑜𝑠(2𝜋/9)  or − 1/2 = 4𝑐𝑜𝑠3(2𝜋/9) − 3𝑐𝑜𝑠(2𝜋/9) 

which       does not     satisfy       the constructibility   conditions using a straightedge and compass. 

However, this angle is constructed with angle trisection using dynamic geometry. Therefore, a 

regular 9-sided polygon is also constructible. Refer to Figure 10. Angle  2𝜋/18, is obtainedon 

further bisecting angle 2𝜋/9, and this angle 2𝜋/18corresponds to the external angle of an 18-sided 

polygon. Thus, an 18-sided regular polygon is also constructible. 
 

5. Results and Conclusions  
An angle, while bisect-able, cannot be trisected using only an unmarked straightedge and compass, 
as proven by Pierre Wantzel. However, an angle can be trisected geometrically using alternative 

methods, such as a marked straightedge and compass or mechanical means. These approaches were 

not approved by Greek mathematicians. Hippocrates’ construction is feasible with a marked ruler 
but was dismissed by Greek mathematicians for relying on mechanical principles rather than purely 

geometric properties. Similarly, Archimedes’ construction faced the same criticism. Approximation 

methods, such as the series expansion of 1/3, lack exactness and fall outside the scope of classical 

geometry. Ludwig Bieberbach’s use of a triangular ruler also exceeded the allowable tools, while 
Origami, though effective, similarly deviates from traditional geometric constraints [4], [6]. 

 To address these limitations, this paper employed dynamic geometry. Unlike static 
geometry, where figures corresponding to given conditions are fixed, dynamic geometry allows 

variation in sides or angles to achieve constructions otherwise impossible with classical methods. 

While dynamic software tools are typically used, this study replicates their functionality through 
manual manipulation. As explained, the construction of dropping perpendiculars successively upon 

https://commons.wikimedia.org/wiki/File:Regular_polygon_9_annotated.svg
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Regular_polygon_9_annotated.svg
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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the hypotenuse and base of a right-angled triangle ABC, with a right angle at 𝐵 and 𝐴𝐵̅̅ ̅̅  of unit 

length, yields the identity 𝐸𝐹/𝐷𝐸 = 𝐷𝐸/𝐵𝐷 = 𝐵𝐷/1 = cos . This further facilitates the relations, 

𝐵𝐷̅̅ ̅̅ = cos (C ),  𝐷𝐸̅̅ ̅̅ = 𝑐𝑜𝑠2 (𝐶), 𝐸𝐹̅̅ ̅̅ = 𝑐𝑜𝑠3 (𝐶). As cosine of given angle equals base of another 

right-angled triangle assuming its hypotenuse of unit length can be equalised with length 

4𝑐𝑜𝑠3 (𝐶) − 3𝑐𝑜𝑠 (𝐶) by varying angle 𝐶 and keeping 𝐴𝐵̅̅ ̅̅ = 1, therefore, ∠𝐶 is one third of the 
given angle facilitating the angle trisection.  

 This construction adheres to the use of a compass and an unmarked straightedge but relies 
on dynamic geometry principles rather than strict static geometry. The method incorporates the 

trigonometric identity for angle tripling in reverse. While the impossibility of angle trisection within 

static geometry rules remains valid, the use of dynamic geometry enables the construction. 
 The construction of an angle by trisection which otherwise is non constructible facilitates 

construction of non constructible regular polygons. Dynamic geometry facilitates construction of 

regular polygons that have external angles 2𝜋/{(2𝑘)(3𝑟)} where 𝑘 = 0, 1, 2,… and 𝑟 = 2, 3, 4, … 

Further, if an n sided regular polygon with external angle 2𝜋/𝑛 is constructible, by angle trisection 

using dynamic geometry, a polygon with external angle   2𝜋/{n(2k)(3m)} is also constructible. 

 Finally, the impossibility of trisecting an angle is further underscored by the observation that 

while a straight line can be divided into n equal parts using a straightedge and compass, an arc can 

only be divided into  2𝑛  equal parts under classical geometric constraints. Looking at the arc as a 
line segment by straightening its curve, the resultant segment can be divided in three parts, and the 

parts can be marked. The line segment can then be restored to its curved form, the angle can be 
trisected by joining the marks of division at the angle point. Such construction is possible and has 

been utilised by Hutcheson [7], but this method also falls out of the conditions imposed by Greek 

mathematicians.  
 

6. Supplementary Electronic Material  
[S1] An HTML file titled “Interactive Angle Trisection” can be found here. For the trisection, the 

given ∠𝐾𝐶𝐵 must be less than 90°, and point C should be slid along line CB until  𝐶𝐽̅̅̅ = 𝐻𝐼.̅̅ ̅̅  Under 

this condition, the interactive figure displays  𝑚∠𝐴𝐶𝐵 = (1/3)( m∠𝐾𝐶𝐵) showing the numerical 

values of both ∠𝐴𝐶𝐵 and angle (1/3)(∠𝐾𝐶𝐵). 
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