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Abstract

This paper presents an original method of angle trisection using dynamic geometry as an extension of
the classical straightedge-and-compass framework. By incorporating variations in geometric
parameters such as segment lengths and angle measures, the method circumvents the classical
impossibility constraints without violating the foundational tools. The trisection process relies on
geometric constructions derived from trigonometric identities and is validated through manual
replication and iterative adjustment. While describing historical attempts and methods that were found
inapplicable under the strict constraints of Greek mathematicians, this paper develops a dynamic
approach that enables the trisection of angles that are proven non-constructible in static geometry. It
also facilitates the construction of regular polygons (e.g., non-constructible 9- and 18-gons) whose
defining angles are otherwise inaccessible. Importantly, this method does not resolve the classical
Greek problem of angle trisection in its strictest form; rather, it offers an alternative constructive
pathway while the original problem remains formally unsolved.

1. Introduction

It occupied the minds of ancient Greek mathematicians to double the unit cube, trisect an angle, and
square a circle geometrically with the use of a straightedge and compass in the interest of purity of
geometry, but these constructions could not be accomplished and still remain unconstructible. As
Heath discusses, the origins of these three problems from antiquity are not well-documented [5].
This is likely attributed to how early Greek mathematical discoveries were orally transmitted before
they were formally recorded—a characteristic feature of the Greek intellectual tradition at the time
[10] [3]. This also contributed to the deceptive simplicity that made them enduring challenges.
Although dividing an angle into two equal parts (bisection) is straightforward, the Greeks found
trisecting a given angle nearly impossible within their geometric constraints. Certain angles, such as
2m, m, t/2,m/4, 31m/20 radians are trisectable, but this property is not universal.

We say that a geometric figure is constructible if it can be drawn using only an unmarked
straightedge and compass. An unmarked straightedge, as shown in Figure 1, is a flat, metallic or
wooden straight piece that does not have any marks written upon it and thus can not be used for
measuring length. However, it can be used to draw straight lines, join points, extend the straight
lines, and compare their lengths. A compass is a geometric tool, as shown in Figure 2, that has one
pointed end to be fixed to the paper and the other end has the facility to hold a pencil or a marker.
Its two ends can be opened according to the desired width. In modern geometric tools, the
adjustment of the compass once made can be locked to avoid any change in it while constructing a
geometric figure, but in Euclidean geometry, the compass used to collapse once it was lifted from
the paper. A compass is used to draw circles, compare radii, bisect angles and line segments, and
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mark equal lengths. It can also be used to compare distances by adjusting its opening. However, it
has no markings to show the actual measurement of angles.

Figure 1 An ornate 18th century iron straightedge Figure 2 A Compass Straightedge Wikimedia
under CCO 1.0 licence
According to Gauss theorem angle 2t /N, where N is a positive integer, is constructible if N
is given by Equation (1.1). In this regard, | refer to Fermat primes denoted by p;, p,, p3, ..., Which
ascertain feasibility of construction of an angle 2w /N that in fact is an external angle of N equal

sided polygon or N sided regular polygon. Fermat primes are specific integers of the form 22" ¢ 1,
where k is a non-negative integer including zero. While the first few Fermat numbers (e.g., 3, 5, 17)
are prime, higher Fermat numbers, such as F; = 4,294,967,297, are composite. Mathematically, an
angle 2m/N is constructible when

N =2"(p,)(p2) (p3) ... (Pw), (1.1)
D1, P2, P3, -, Py are distinct Fermat’s primes, m = 0,1, 2, ... [3].

Coming to trisectability, if N = (2™)(p,)(p3) ... (b ), angle 21t /N is constructible, and its
trisected angle 2m/(3N) is also constructible, since number 3 is also a Fermat prime. But when N
instead of being equal to (2™)(p,)(p3) ... (py), is equal to 3(2™)(p,) (p3) ... (py ), therefore, it
would not be trisectable, because in the trisection, N would equal (3)(3)(2™)(p,) (p3) ... (Pu),
which contains a repeated factor of 3 and thus violates the condition of Equation (1.1) [3].
Concluding it, for an angle 2mt/N to be intrinsically trisect-able, N must not be divisible by 3, and
the angle must also be constructible. Notwithstanding the above condition, a derivation of the
Galois theory provides that an angle T is constructible if and only if the complex number e'” lies in
a field extension of rationals of degree a power of 2.

1.1 Historical Context
The question arises as to why Greek mathematicians were particular about the constructibility of
geometric figures using a straight edge and compass. Its answer lies in the purity of geometrical
construction with tools as simple as a straightedge and a compass. ‘Purity’ thus denotes adherence
to geometric principles in methods that trisect a given angle.

Coming to trisectability, some angles using Fermat’s primes as stated above are trisectable
geometrically, but all angles are not trisect-able. The impossibility stems from the fact that, unlike
guadratic equations, which can be solved using geometric construction, a general cubic equation
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cannot be solved with just a straightedge and compass. This limitation directly translates into the
classical Delian problem of doubling the cube—a task proven impossible by Pierre Wantzel in 1837
[10].

Nevertheless, early mathematicians such as Hippocrates, Archimedes and others made notable
attempts to solve this problem, often resorting to methods that violated the classical geometric rules.
Hippocrates used a geometric drawing as given in Figure 3 which is explained herein under.

1.1.1 Hippocrates Geometric Construction

A F

B QC

Figure 3 Angle Trisection by Hippocrates Construction
Construction: To trisect ZABC, construct AD L BC, where D is on BC. Complete the rectangle
ADBE. Construct EA with F beyond A on the ray. Draw BF passing through H, which is the
intersection of AD and BF such that HF = 2 AB
By construction, mzFBC = %mLABC [8].

Proof:
1. Mark G as the midpoint of HF.
2. Construct AG
3. A FAH has aright angle at A by construction, therefore AG = HG = GF.
4. By construction, AB = %ﬁ By substitution, AB = AG = HG = GF.
5. A ABG is an isosceles triangle, thus m£ABG = mzAGB.
6. A GAF is an isosceles triangle, thus m£GAF = m£GFA.
7. In A GAF, use the external angle relationship, m£BGA = m£GAF + m£AFG. Since the

triangle is isosceles, m£BGA = 2(m£AFG).

8. By construction, EF || BC. Additionally, mzCBF = m£AFG as they are alternate angles of
parallel lines.

9. Consider then LABC. By the angle addition postulate, n£ZABC = m4CBF + m4GBA. By
substitution, m£ABC = m«CBF + m£BGA. Again, by substitution, n£ZABC = m«CBF +
2(m<£AFG). By substitution once more, m£ABC = m£CBF + 2(m«CBF).

10. Therefore, m£ABC = 3(m«CBF), and the angle is trisected.

While this construction is mechanically correct, it uses a marked ruler, violating classical constraints.
As Plato remarked: “In proceeding in [a mechanical] way, did not one lose irredeemably the best of
geometry [8]?”

Another mechanical solution found in Arabic work in the ‘Book of Lemmas’ is attributed to
Archimedes. In fact, this work is not a translated copy of the work of Archimedes, but most historians
believe much of the work given in the said book belongs to Archimedes [8].
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1.1.2 Archimedes’ Construction

To trisect ZDF A, construct a circle with centre F and points A and D on its circumference. Draw a
line from D to intersect the circle at C and the extended line AF at B, ensuring CB = CF. Construct
EF || DB, ensuring CF = EF = r, the radius of the circle.

Figure 4 Angle Trisection by Archimedes' Construction

Proof:
i In isosceles A CFB, m£CFB = m«CBF, therefore, external m£DCF = 2(m«CBF).
. In a triangle A FCD, m«DCF = m£FDC, since FC, FD are the radii of the circle.
iii. The m«CDF = m«DEF, being alternate angles, therefore, nZDEF = 2(m«CBF).

Iv. The m£CFB = m£AFE, being corresponding angles, therefore n£ZAFE = %(mLEF D or
msAED = (g) m2AFD [8].

As with Hippocrates’ method, this construction relies on mechanical aids, making it
unacceptable under classical geometric rules. Another method, though not yielding accurate
trisection, is based on summation of an infinite series whereby the sum of some of the terms of the
series was used. Another method was given by Ludwig Biebetbach but it used trisectrix and was not
acceptable [1]. A trisectrix is a plane curve such that, for a given angle, a point moving along the
curve allows the construction of one-third of that angle.

1.1.2 Trisectrix of Maclaurin

The Trisectrix of Maclaurin is the locus of the intersection point of two lines rotating about their
centres (0,0) and (a, 0) at uniform angular speeds, with the line rotating about (a,0) moving three
times as fast as the line rotating about (0, 0). Initially, both lines coincide along the segment
connecting(0,0) and (a, 0). The curve traced forms a loop that extends to infinity both upward
and downward, with x = —a/2 as its asymptote [11]. It intersects the x-axis at (0, 0) and

(3a/2,0), and intersects the vertical line x = a aty = +a/3/2 [11]. The m£0QP = g(qu)),

and the distance r = OP is determined by the law of sines:

r/sin(p) = a/sin(2¢/3).
If the given, m£QPX = m<¢, then trisected angle is QOX (¢/3) [11].
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Figure 5 Trisectrix of Maclaurin, Image: MaclaurinTrisectrix.SVG by RDBury, created using
gnuplot and Inkscape

2 Modern Approaches and Use of Physical and Intuitive Methods

2.1 Angle Trisection by Paper Folding Art Origami

Cubic equations including cos(x) = 4 cos3(x) — 3 cos (x) where angle x is to be trisected, are
solvable using Origami [4], [6] by folding a sheet of paper along a straight line such that a set of
particular incidences is obtained between points and lines. These incidences are determinable by the
coefficients of the equation.

Consider an angle of /3 radian, which is to be trisected, relates to solving a polynomial
equation P(cos x) =0, or 4 cos3(x) — 3 cos (x) —1/8 = 0. By the rational root theorem, this
equation can have rational roots, +1, +1/2, +1/4, £1/8. But none of these happen to be a root of the
equation. Therefore, the equation is not reducible over rational roots, and the minimum polynomial
has a degree of three. Thus, the angle n/3 is not trisect-able.

2.2 Trisection of an Arbitrary Angle by Dynamic Geometry

2.2.1 Dynamic Geometry
A geometric construction ordinarily is drawn according to the given conditions. I call such a drawing
as belonging to Static Geometry since no adjustment in length or angle is permissible and these are
drawn, according to the given geometric statement. At times, given conditions can not be fulfilled by
geometric drawing and need variation in length, angle or other geometric elements bringing in
dynamic approach. I. M. Yaglom in his book Geometric Transformations stresses that interactive and
real-time manipulation is vital for solving non-conventional geometric problems [9].

Such a dynamic approach brings in use of dynamic geometry. Dynamic geometry is a branch
of geometry that focuses on constructing geometric figures based on given conditions and exploring
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how variations in elements, such as angles, sides, or points, affect the figure’s ability to meet those
conditions. Unlike traditional static constructions, dynamic geometry encourages interactive
exploration, where the geometric objects can be manipulated in real-time. This interactivity allows
users to investigate geometric properties and solve problems that may not be easily approached
through conventional methods, such as using a straightedge and compass.

The use of software tools like Geometer’sSketchpad, GeoGebra, or Cabri Geometry
significantly enhances the ability to explore, visualise, and manipulate geometric figures. Dynamic
geometry provides an interactive environment that facilitates the understanding of geometric
relationships and the discovery of solutions to complicated problems. By engaging with dynamic
geometry, users are able to investigate geometric configurations more deeply and intuitively, making
it a valuable tool for both learning and solving advanced geometric problem.

2.2.2 Dynamic Geometry: Alternative Constructions Within Classical Boundaries

Dynamic geometry offers an alternative paradigm that operates within a different conceptual and
operational framework from classical compass-and-straightedge constructions. It does not contradict
classical impossibility theorems—such as the trisection of an arbitrary angle or the duplication of the
cube—but instead circumvents their constraints by leveraging continuous motion, loci, and real-time
feedback mechanisms. These tools allow constructions that are not permitted in the static framework
of classical geometry, thus opening new pedagogical and exploratory avenues without invalidating
the foundational results of traditional Euclidean theory.

2.2.3 Construction of Trisection of an Arbitrary Angle

Figure 7 Uncorrected Angle Trisection
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Figure 8 Corrected Angle Trisection

The given £KCB is shown in Figure 7, a line segment CK equal to unity is marked, and from point
K, construct K] 1L CB, meeting itat /.

Vi.

Vii.

A AABC is constructed with an arbitrary base angle at point C and AB is of unit length and
is L line CB.

From point B, construct BD 1 AC, from point D, construct DE 1 BC and from point E,
construct EF 1L AC.

Perpendiculars BD is extended to point G, so that BG = 3BD, similarly the line segment
EF is extended to H, so that EH = 4EF.

From point G, a line GH is drawn so that m2GHI = m£IEB.

The compass is opened equal to length segment €/ and compared with length of line
segment HI. If both lengths are equal, no further change in construction is needed.
Figure 7 illustrates the uncorrected construction where m«C(m£ACRB) takes an arbitrary
value, resulting in unequal lengths CJ and HI. Refer to Figure 7, C] = 36and HI =
34 units. This inequality reflects the error in trisection when the cosine triple-angle
identity is applied without adjustment. Kindly note inequality in trisection in Figure 7 as
m2£KCB = 58 degrees andmz£ACB = 13 degrees. Iterative corrections are performed by
varying 2C along extended length BJ, as detailed in steps iii to v, until CJ equals HI.
Kindly peruse corrected construction in Figure 8.

Figure 8 displays the corrected construction where mzC(m£ACB) has been adjusted to
achieve exact triection. This is confirmed when CJ equals HI, both measuring 36 units,
and the angles are verified using AutoCAD: m£ACB = 19.33 degrees andmz£KCB =
58 degrees. Please note that, AutoCAD software application was used only for the purpose
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of clarifying the equality in lengths and angle trisection; otherwise the constructions have
been achieved using a straight edge and compass, employing dynamic geometry.

Proof of Trisection of Angle

i. Referring to Figure 8, in A KCJ, CK = 1 unit, therefore, C] = cos(2KC])).

ii. In AABD, m£ABD = m«C, therefore % = cos(C) or BD = cos (C), since AB = 1.
iii.  Intriangle DBE, DE/DB = cos(C) or DE = cos?(C), since BD = cos (C).

iv.  Intriangle DEF, EF/DE = cos)or EF = cos® (C), since DE = cos?(C).

V. Since HI = HE — GB = 4co0s3(C) — 3cos(C), therefore, HI = cos(3C).

Vi. When C] = HI, then cos GAKCB) = c0s£ACB) or m£zKCB = 3(m£ACB).

vii.  Hence base angle mzACBor mz(C = %(mLKCB).

3. Construction of Regular Polygons Based on Angle Trisection

3.1 External and Internal Angles of a Regular N Sided Polygon
A regular polygon is a geometric figure that has n equal sides, where n can be 3,4, 5 ... A straight
line subtends an angle of mradians. If vertex angle A of the triangle ABC is enlarged, its base angles
will decrease, eventually reaching zero when angle A attains x radians. This leads to the result that
sum of three angles that its sides subtend equals to x radians. A natural corollary is that when its
sides are equal, all three angles are equal with angle /3 radians in an equilateral triangle (or a
regular polygon of 3 sides).
When the base BC of the triangle ABC, is extended, each of its external angle becomes (m —
n/3) = 2w /3 radians. Similarly for a polygon with four sides each external angle is 2m /4 radians.
By following the same procedure, the external angle of a regular polygon with n sides is
2 /n.Consequently, its internal angle will ber — 2 /n.

That leads to the conclusion, if an angle 2t /n is constructible, then a regular polygon with
n sides is also constructible. However, not all regular polygons can be constructed using a
straightedge and compass. Referring to Section 1, an angle 2m/n is constructible if and only if n is
a power of 2 or a product of powers of 2 and one or more Fermat primes.

3.2 Construction of Non-Constructible Regular Polygons

If g is a positive integer and n is of type 3q satisfying Equation (1.1), then a regular polygon of
sides 3¢ is constructible, but a regular polygon of sides 32q is not constructible as n = (3)(3)q
does not have distinct Fermat’s primes. As explained above, dynamic geometry facilitates
construction of a non constructible angle by its trisection, therefore, trisected external angle
2n/{(3)(3)q} although is non constructible using a straightedge and compass, is made constructible
employing dynamic geometry, facilitates construction of non constructible regular polygons. Thus
use of dynamic geometry helps geometric construction of non constructible regular polygons of
sides n = 283" (p1) (p,) (p3) ... (pm) Where Kk, py, P2, P3, -, Py have there unusual meaning and
r=234,..[2].
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4. Construction of Non-Constructible Regular Polygons Using Dynamic
Geometry

4.1Construction of non-constructible 9-Sided and 18-Sided Regular Polygons

Figure 10 A 9-Sided Regular Polygon, Credit Figure 11 A 18-Sided Regular Polygon,
Credit L&szl6NemethCreative CommonsCCO0 1.0 UniversalLaszIoNémethCreative CommonsCCO
1.0 Universal
The external angle of 9-sided polygon as already discussed earlier is 2w /9. Ordinarily, this angle is
not constructible as it violates essential conditions of Equation (1.1) and it also corresponds to the

equation cos(2m/3) = 4cos3(2m/9) — 3cos(2m/9) or — 1/2 = 4cos3(2m/9) — 3cos(2m/9)
which  doesnot satisfy  the constructibility conditions using a straightedge and compass.
However, this angle is constructed with angle trisection using dynamic geometry. Therefore, a
regular 9-sided polygon is also constructible. Refer to Figure 10. Angle 21 /18, is obtainedon
further bisecting angle 27 /9, and this angle 2t /18corresponds to the external angle of an 18-sided
polygon. Thus, an 18-sided regular polygon is also constructible.

5. Results and Conclusions

An angle, while bisect-able, cannot be trisected using only an unmarked straightedge and compass,
as proven by Pierre Wantzel. However, an angle can be trisected geometrically using alternative
methods, such as a marked straightedge and compass or mechanical means. These approaches were
not approved by Greek mathematicians. Hippocrates’ construction is feasible with a marked ruler
but was dismissed by Greek mathematicians for relying on mechanical principles rather than purely
geometric properties. Similarly, Archimedes’ construction faced the same criticism. Approximation
methods, such as the series expansion of 1/3, lack exactness and fall outside the scope of classical
geometry. Ludwig Bieberbach’s use of a triangular ruler also exceeded the allowable tools, while
Origami, though effective, similarly deviates from traditional geometric constraints [4], [6].

To address these limitations, this paper employed dynamic geometry. Unlike static
geometry, where figures corresponding to given conditions are fixed, dynamic geometry allows
variation in sides or angles to achieve constructions otherwise impossible with classical methods.
While dynamic software tools are typically used, this study replicates their functionality through
manual manipulation. As explained, the construction of dropping perpendiculars successively upon
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the hypotenuse and base of a right-angled triangle ABC, with a right angle at B and AB of unit
length, yields the identity EF /DE = DE/BD = BD/1 = cos . This further facilitates the relations,
BD = cos (C), DE = cos? (C), EF = cos® (C). As cosine of given angle equals base of another
right-angled triangle assuming its hypotenuse of unit length can be equalised with length

4cos® (C) — 3cos (C) by varying angle C and keeping AB = 1, therefore, 2C is one third of the
given angle facilitating the angle trisection.

This construction adheres to the use of a compass and an unmarked straightedge but relies
on dynamic geometry principles rather than strict static geometry. The method incorporates the
trigonometric identity for angle tripling in reverse. While the impossibility of angle trisection within
static geometry rules remains valid, the use of dynamic geometry enables the construction.

The construction of an angle by trisection which otherwise is non constructible facilitates
construction of non constructible regular polygons. Dynamic geometry facilitates construction of
regular polygons that have external angles 2m/{(2%¥)(3")} where k = 0,1, 2,...and r = 2, 3,4, ...
Further, if an n sided regular polygon with external angle 2t /n is constructible, by angle trisection
using dynamic geometry, a polygon with external angle 2n/{n(2k)(3m)} is also constructible.

Finally, the impossibility of trisecting an angle is further underscored by the observation that
while a straight line can be divided into n equal parts using a straightedge and compass, an arc can
only be divided into 2™ equal parts under classical geometric constraints. Looking at the arc as a
line segment by straightening its curve, the resultant segment can be divided in three parts, and the
parts can be marked. The line segment can then be restored to its curved form, the angle can be
trisected by joining the marks of division at the angle point. Such construction is possible and has
been utilised by Hutcheson [7], but this method also falls out of the conditions imposed by Greek
mathematicians.

6. Supplementary Electronic Material

[S1] An HTML file titled “Interactive Angle Trisection” can be found here. For the trisection, the

given KCB must be less than 90°, and point C should be slid along line CB until CJ = HI. Under
this condition, the interactive figure displays m2ACB = (1/3)( m«KCB) showing the numerical

values of both ZACB and angle (1/3)(«KCB).
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